Dirichlet to Neumann Operator on Differential Forms

نویسندگان

  • MIKHAIL BELISHEV
  • VLADIMIR SHARAFUTDINOV
چکیده

We define the Dirichlet to Neumann operator on exterior differential forms for a compact Riemannian manifold with boundary and prove that the real additive cohomology structure of the manifold is determined by the DN operator. In particular, an explicit formula is obtained which expresses Betti numbers of the manifold through the DN operator. We express also the Hilbert transform through the DN map. The Hilbert transform connects boundary traces of conjugate co-closed forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Forms to Semigroups

We present a review and some new results on form methods for generating holomorphic semigroups on Hilbert spaces. In particular, we explain how the notion of closability can be avoided. As examples we include the Stokes operator, the Black–Scholes equation, degenerate differential equations and the Dirichlet-to-Neumann operator. Mathematics Subject Classification (2000). Primary 47A07; Secondar...

متن کامل

Remarks on the Structure of Dirichlet Forms on Standard Forms of von Neumann Algebras

For a von Neumann algebra M acting on a Hilbert space H with a cyclic and separating vector ξ0, we investigate the structure of Dirichlet forms on the natural standard form associated with the pair (M, ξ0). For a general Lindblad type generator L of a conservative quantum dynamical semigroup on M, we give sufficient conditions so that the operator H induced by L via the symmetric embedding of M...

متن کامل

The Dirichlet to Neumann mapping for harmonic differential forms

We show that the full symbol of the Dirichlet to Neumann map of the k-form Laplace’s equation on a Riemannian manifold (of dimension greater than 2) with boundary determines the full Taylor series of the metric at the boundary. This extends the result of Lee and Uhlmann for the case k = 0. The proof avoids the computation of the full symbol by using the calculus of pseudo-differential operators...

متن کامل

A Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates

This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...

متن کامل

Functional Calculus of Dirac Operators and Complex Perturbations of Neumann and Dirichlet Problems

We prove that the Neumann, Dirichlet and regularity problems for divergence form elliptic equations in the half space are well posed in L2 for small complex L∞ perturbations of a coefficient matrix which is either real symmetric, of block form or constant. All matrices are assumed to be independent of the transversal coordinate. We solve the Neumann, Dirichlet and regularity problems through a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008